Chọn C
Ta xét ba trường hợp sau
∙
. Chia cả tử và mẫu cho
ta có:

∙
.Chia cả tử và mẫu cho
ta có:

∙
.Chia cả tử và mẫu cho
n
p
:

Chọn C
Ta xét ba trường hợp sau
∙
. Chia cả tử và mẫu cho
ta có:

∙
.Chia cả tử và mẫu cho
ta có:

∙
.Chia cả tử và mẫu cho
n
p
:

Hãy xem trong lời giải của bài toán sau đây có bước nào bị sai?
Bài toán: chứng minh rằng với mọi số nguyên dương n, mệnh đề sau đây đúng:
A(n) : “nếu a và b là những số nguyên dương mà max{a,b} = n thì a = b”
Chứng minh :
Bước 1: A(1):”nếu a,b là những số nguyên dương mà max{a,b} = 1 thì a = b”
Mệnh đề A(1) đúng vì max{a,b} = 1 và a,b là những số nguyên dương thì a= b =1.
Bước 2: giả sử A(k) là mệnh đề đúng vơi k≥1
Bước 3: xét max{a,b} = k+1 ⇒max{a-1,b-1} = k+ 1-1 = k
Do a(k) là mệnh đề đúng nên a- 1= b-1 ⇒ a= b⇒ A(k+1) đúng.
Vậy A(n) đúng với mọi n ∈N*
A. Bước 1
B. Bước 2
C. Bước 3
D. Không có bước nào sai
Cho khai triển 1 + 2 x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n , n ≥ 1. Tìm số giá trị nguyên của n với n ≤ 2018 sao cho tồn tại k 0 ≤ k ≤ n - 1 thỏa mãn a k = a k + 1
A. 2018
B. 673
C. 672
D. 2017
Giá trị của k để hàm só f(x)=\(\hept{\begin{cases}\frac{x^{2019}+x-2}{\sqrt{2020+1}-\sqrt{x+2020}}\\2k\end{cases}}\) liên tục tại x0=1 có dạng \(k=\frac{a\sqrt{b}}{c}\), với a,b,c là các số nguyên và \(\frac{a\sqrt{b}}{c}\)
là phân số tới giản. tính a-b+c ( f(x) = 2k , khi x<=1; f(x)=... khi x>1)
Cho hàm số y = a x + b x - 1 có đồ thị cắt trục tung tại A(0; -1), tiếp tuyến tại A có hệ số góc k = -3. Các giá trị của a, b là
A. a = 1; b = 1
B. a = 2; b = 1
C. a = 1; b = 2
D. a = 2; b = 2
Cho hàm số y = a x + b x - 1 có đồ thị cắt trục tung tại A(0; -1), tiếp tuyến tại A có hệ số góc k = -3. Các giá trị của a, b là
A. a = 1; b = 1
B. a = 2; b = 1
C. a = 1; b = 2
D. a = 2; b = 2
tồn tại hay không số nguyên dương m,n,p thỏa mãn đồng thời các điều kiện (m+n,mn-1)=1, (m-n; mn+1)=1 và \(\text{(m+n)^2+(mn-1)^2=p^2}\)?. (Trong đó (a,b) là ước chung lớn nhất của 2 số nguyên dương a và b)
Cho dãy số ( u n ) xác định bởi u 1 = 0 và
u n + 1 = u n + 4 n + 3 , ∀ n ≥ 1 .
Biết
l i m u n + u 4 n + u 4 2 n + . . . + u 4 2018 n u n + u 2 n + u 2 2 n + . . . + u 2 2018 n = a 2019 + b c
với a, b, c là các số nguyên dương và b < 2019 .
Tính giá trị S=a+b-c.
![]()
![]()
![]()
![]()
tồn tại hay không số nguyên dương m,n,p thỏa mãn đồng thời các điều kiện (m+n,mn-1)=1, (m-n; mn+1)=1 và \(\text{(m+n)^2+(mn-1)^2=p^2}\)?. (Trong đó (a,b) là ước chung lớn nhất của 2 số nguyên dương a và b)
Cho n là số nguyên dương; a, b là các số thực (a>0). Biết trong khai triển a - b a n có số hạng chứa a 9 b 4 . Số hạng có số mũ của a và b bằng nhau trong khai triển a - b a n là
A. 6006 a 5 b 5
B. 5005 a 8 b 8
C. 3003 a 5 b 5
D. 5005 a 6 b 6