Xét \(xy>1\)
Ta chứng minh: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\ge0\)(đúng)
Dấu = xảy ra khi \(x=y\) (loại)
Xét \(xy< 1\)
Ta chứng minh: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\le0\)
\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\le0\)(đúng)
Dấu = xảy ra khi \(x=y\) (loại)
Từ (1) và (2) \(\Rightarrow xy=1\)
\(\Rightarrow P=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{2}{1+xy}=\frac{4}{1+xy}=\frac{4}{2}=2\)