Đáp án C
I = ∫ 1 3 e 3 x x d x = ∫ 1 3 e 3 x 3 x d 3 x = ∫ 3 9 e t t d t = F 9 - F 3
Đáp án C
I = ∫ 1 3 e 3 x x d x = ∫ 1 3 e 3 x 3 x d 3 x = ∫ 3 9 e t t d t = F 9 - F 3
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị của hàm số f ' ( x ) , biết f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) và các khẳng định sau:
Hàm số y = f(x) có 2 điểm cực trị.
Hàm số y = f(x) đồng biến trên khoảng ( - ∞ ; 0 ) .
Max [ 0 ; 3 ] f ( x ) = f ( 3 ) .
Min ℝ f ( x ) = f ( 2 ) .
Max [ - ∞ ; 2 ] f ( x ) = f ( 0 ) .
Số khẳng định đúng là
A. 2.
B. 3.
C. 4.
C. 4.
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f'(x), biết f(3)+f(20=f(0)+f(1) và các khẳng định sau:
1) Hàm số y=f(x) có 2 điểm cực trị
2) Hàm số y=f(x) đồng biến trên khoảng - ∞ ; 0
3) M a x 0 ; 3 f x = f 3
4) M a x ℝ f x = f 2
5) M a x - ∞ ; 2 f x = f 0 .
Số khẳng định đúng là
A. 2
B. 3
C. 4
D. 5
Cho hàm số f x = x 2 - 3 x - 3 , x ≠ 3 2 3 , x = 3 . Tìm khẳng định đúng trong các khẳng định sau:
( I ). f(x) liên tục x = 3 .
( II ). f(x) gián đoạn tại x = 3 .
( III ). f(x) liên tục trên ℝ
A. Chỉ ( II ) và ( III ).
B. Chỉ ( I ) và ( III ).
C. Cả ( I ),( II ) và ( III ) đều đúng.
D. Chỉ ( I ) và ( II ).
Cho hàm số f(x) xác định trên R và hàm số y = f’(x) có đồ thị như hình bên dưới:
Xét các khẳng định sau:
(I) Hàm số y = f(x) có ba cực trị.
(II) Phương trình f(x) = m + 2018 có nhiều nhất ba nghiệm.
(III) Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).
Số khẳng định đúng là:
A. 1
B. 2
C. 0
D. 3
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị hàm số y = f '(x) như hình vẽ bên. Xét các khẳng định sau:
(I) Hàm số y = f(x) có ba cực trị.
(II) Phương trình f(x) = m + 2018 có nhiều nhất ba nghiệm.
(III) Hàm số y = f(x + 1) nghịch biến trên khoảng (0;1) .
Số khẳng định đúng là:
A. 1
B. 3
C. 2
D. 0
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho hàm số f ( x ) = 1 3 + 2 x + 1 3 + 2 - x . Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
1 ) f ' ( x ) # 0 , ∀ x ∈ R
2 ) f ( 1 ) + f ( 2 ) + . . . + f ( 2017 ) = 2017
3 ) f ( x 2 ) = 1 3 + 4 x + 1 3 + 4 - x
A. 0
B. 3
C. 2
D. 1
Cho K là một khoảng và hàm số y=f(x) có đạo hàm trên K. Giả sử f’(x)=0 chỉ tại một số hữu hạn điểm trên K. Khẳng định nào sau đây là đúng?
A. Nếu f ' x ≥ 0 , ∀ x ∈ K thì hàm số là hàm hằng trên K
B. Nếu f ' x > 0 , ∀ x ∈ K thì hàm số nghịch biến trên K
C. Nếu f ' x < 0 , ∀ x ∈ K thì hàm số đồng biến trên K
D. Nếu f ' x ≤ 0 , ∀ x ∈ K thì hàm số nghịch biến trên K