Với \(y=3\) ko phải nghiệm
Với \(y\ne3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y-3}{\sqrt{x+y}+\sqrt{x+3}}=x\\\sqrt{x+y}+\sqrt{x}=x+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left(y-3\right)\left(\sqrt{x+y}-\sqrt{x+3}\right)}{\left(\sqrt{x+y}+\sqrt{x+3}\right)\left(\sqrt{x+y}-\sqrt{x+3}\right)}=x\\\sqrt{x+y}+\sqrt{x}=x+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+y}-\sqrt{x+3}=x\\\sqrt{x+y}+\sqrt{x}=x+3\end{matrix}\right.\)
Trừ vế:
\(\Rightarrow\sqrt{x}+\sqrt{x+3}=3\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)+\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{x-1}{\sqrt{x+3}+2}=0\)
\(\Rightarrow x;y\)