a/ A=\(\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
A xác định khi 3x-1 #0 <=> x khác 1/3
b/ x=8 => A=\(\frac{8}{3.8-1}=\frac{8}{23}\)
c/ A\(\le0\)Khi:
+/\(\hept{\begin{cases}x\ge0\\3x-1\le0\end{cases}}< =>0\le x\le\frac{1}{3}\)
+/ \(\hept{\begin{cases}x\le0\\3x-1\ge0\end{cases}}\)Không có giá trị x phù hợp
Vậy để A<0 <=> \(0\le x\le\frac{1}{3}\)
a,\(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
Vậy đk xác định của phân thức là \(x\ne\frac{1}{3}\)
b, Ta thay x=8
\(\frac{x}{3x-1}=\frac{8}{3.8-1}=\frac{8}{23}\)
c, x<0
\(\Rightarrow\frac{x}{3x-1}=-1\Leftrightarrow x=0,25\)
mấy bạn kia dùng dấu \("\le"\) là sai nhé
\(c)\) \(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}< 0\)
TH1 : \(\hept{\begin{cases}x< 0\\3x-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{1}{3}\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x>0\\3x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}}\Leftrightarrow0< x< \frac{1}{3}}\)
Vậy để phân thức âm thì \(0< x< \frac{1}{3}\)
PS : giải thích dùm 1 người, ko copy