Chọn A.
Gọi x 1 ; x 2 ; x 3 là 3 nghiệm phân biệt của PT x 3 − 3 m x 2 + 9 x − 7 = 0
Áp dụng định lý Vi – ét cho PT bậc 3 có:
x 1 + x 2 + x 3 = − b a x 1 x 2 + x 1 x 3 + x 2 x 3 = c a x 1 x 2 x 3 = − d a nên có x 1 + x 2 + x 3 = − − 3 m 1 = 3 m x 1 x 2 + x 1 x 3 + x 2 x 3 = 9 1 = 9 x 1 x 2 x 3 = − 7 1 = 7
Để x 1 ; x 2 ; x 3 lập thành 1 cấp số cộng, ta giả sử u 1 = x 1 , u 2 = x 2 ; u 3 = x 3 tức là x 2 = x 1 + d , x 3 = x 1 = 2 d
Khi đó ta có:
3 x 1 + 3 d = 3 m x 1 x 1 + d + x 1 x 1 + 2 d + x 1 + d x 1 + 2 d = 9 x 1 x 1 + d x 1 + 2 d = 7
⇔ x 1 = m − d m − d m − d + d + m − d m − d + 2 d + m − d + d m − d + 2 d = 9 m − d m − d + d m − d + 2 d = 7
⇔ x 1 = m − d m − d m + m − d m + d + m m + d = 9 m − d m m + d = 7
⇔ x 1 = m − d m 2 − m d + m 2 + m d + m 2 − d 2 = 9 m − d m m + d = 7
⇔ x 1 = m − d 3 m 2 − d 2 = 9 m − d m m + d = 7 ⇔ x 1 = m − d d 2 = 3 m 2 − 9 m m 2 − d 2 = 7
⇔ x 1 = m − d d 2 = 3 m 2 − 9 m m 2 − 3 m 2 − 9 = 7 ⇔ x 1 = m − d d 2 = 3 m 2 − 9 m − 2 m 2 + 9 = 7
⇔ x 1 = m − d d 2 = 3 m 2 + 9 − 2 m 3 + 9 m = 7 ⇔ m = 1 m = − 1 + 15 2 m = − 1 − 15 2