Chọn D
Xét y = log a x ; ( 0 < a ≠ 1 ) ( C 0 ), y = f(x)(C), (C) đối xứng với ( C 0 ) qua I(2;1).
Gọi điểm đối xứng với nhau qua điểm I(2;1), ta có:
thay vào phương trình của ( C 0 ) ta được:
Suy ra = -2017
Như vậy,
Chọn D
Xét y = log a x ; ( 0 < a ≠ 1 ) ( C 0 ), y = f(x)(C), (C) đối xứng với ( C 0 ) qua I(2;1).
Gọi điểm đối xứng với nhau qua điểm I(2;1), ta có:
thay vào phương trình của ( C 0 ) ta được:
Suy ra = -2017
Như vậy,
Đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số y = log a x ( 0 < a ≠ 1 ) qua điểm I(2; 1). Giá trị của biểu thức f ( 4 - a 2019 ) bằng
A. 2023
B. -2023
C. 2017
D. -2017
Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a x ( a > 0 , a ≠ 1 ) qua điểm I(1;1). Giá trị của biểu thức 2 + log a 1 2018 bằng
Đồ thị hàm số y = f ( x ) đối xứng với đồ thị hàm số y = log a x ; ( 0 < a ≠ 1 ) qua điểm I 2 ; 1 . Giá trị của biểu thức f 4 - a 2019 bằng
A. 2023
B. -2023
C. 2017
D. -2017
Cho hàm số y = f(x) có đạo hàm trên R. Đồ thị hàm số y= f’(x) như hình vẽ bên dưới
Số điểm cực trị của hàm số y= g( x)= f( x- 2017) – 2018x+ 2019 là
A. 1
B. 2
C.3
D. 4
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ . Đồ thị hàm số y = f'(x) được cho như hình vẽ bên.
Số điểm cực trị của hàm số g(x) = f(x-2017) - 2018x + 2019 là:
A. 1.
B. 3.
C. 2.
D. 0.
Cho hàm số y = f(x) = a x + b c x + d ( a,b,c,d ∈ ℝ , - d c ≠ 0) đồ thị hàm số y= f’(x) như hình vẽ.
Biết đồ thị hàm số y= f(x) cắt trục tung tại điểm có tung độ bằng 3. Tìm phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành ?
A. y = x - 3 x + 1
B. y = x + 3 x - 1
C. y = x + 3 x + 1
D. y = x - 3 x - 1
Biết hai hàm số y = a x , y = f ( x ) có đồ thị như hình vẽ đồng thời đồ thị của hai hàm số này đối xứng nhau qua đường thẳng y = - x . Tính f - a + f - a 2
A. -3
B. 4
C. 5
D. đáp án khác
Biết hai hàm số y = a x ; y = f ( x ) có đồ thị như hình vẽ đồng thời đồ thị của hai hàm số này đối xứng nhau qua đường thẳng y = -x. Tính f ( - a ) + f ( - a 2 )
A. -3
B. 4
C. 5
D. 3
Cho hàm số y= f( x) =ax4+ bx2+ c ( a> 0) có đồ thị (C), đồ thị hàm số y= f’(x). Đồ thị hàm số y= f( x) tiếp xúc với trục hoành tại hai điểm. Tính diện tích của hình phẳng giới hạn bởi đồ thị (C) và trục hoành?
A. 7 15
B. 8 15
C. 14 15
D. 16 15