Đáp án A
Với x = − 1 ta có y − 1 = − 4 . Vậy hàm số luôn đi qua điểm M − 1 ; − 4 ( có thể giải theo điểm cố định M x 0 ; y 0 )
Đáp án A
Với x = − 1 ta có y − 1 = − 4 . Vậy hàm số luôn đi qua điểm M − 1 ; − 4 ( có thể giải theo điểm cố định M x 0 ; y 0 )
Cho hàm số y = x 3 - 3 x 2 + ( m + 1 ) x + 1 có đồ thị ( C m ) với m là tham số. Tìm tất cả các giá trị của tham số m để đường thẳng d : y = x + 1 cắt đồ ( C m ) thị tại ba điểm phân biệt P(0;1) sao cho tam giác OMN vuông tại O (O là gốc tọa độ)
A. m = -2
B. m = -6
C. m = -3
D. m = - 7 2
Cho hàm số y = x + 1 2 x + 1 có đồ thị C . Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = m x + m + 1 2 cắt đồ thị C tại hai nghiệm phân biệt A, B sao cho O A 2 + O B 2 đạt giá trị nhỏ nhất (O là gốc tọa độ).
A. m = 1
B. m > 0
C. m ± 1
D. m = 2
Cho hàm số y = x + 1 2 x + 1 có đồ thị (C). Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = m x + m + 1 2 cắt đồ thị (C) tại hai nghiệm phân biệt A, B sao cho O A 2 + O B 2 đạt giá trị nhỏ nhất (O là gốc tọa độ).
A. m = 1
B. m > 0
C. m ± 1
D. m = 2
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng y = -x + m cắt đồ thị hàm số y = x - 2 x - 1 tại hai điểm phân biệt A, B sao cho OA + OB = 4 (O là gốc tọa độ)?
A. 2
B. 1
C. 0
D. 3
Cho (C) là đồ thị của hàm số y = x - 2 x + 1 và đường thẳng d : y = m x + 1 . Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A. m ≥ 0
B. m < 0
C. m ≤ 0
D. m > 0
Cho hàm số y = x 3 - 3 x 2 + ( m + 1 ) x + 1 có đồ thị c m với m là tham số. Tìm tất cả các giá trị của tham số m để đường thẳng d : y = x + 1 cắt đồ thị c m tại ba điểm phân biệt P ( 0 ; 1 ) , M , N sao cho tam giác OMN vuông tại O (O là gốc tọa độ)
A. m = -2
B. m = -6
C. m = -3
D. m = - 7 2
Cho hàm số y = x + 2 2 x + 1 . Xác định m để đường thẳng y=mx+m-1 luôn cắt đồ thị hàm số tại hai điểm phân biệt thuộc hai nhánh của đồ thị
A.m<1
B.m>0
C.m<0
D.m=0
Cho hàm số y = x 3 - 3 x 2 + 4 có đồ thị (C), đường thẳng d : y = m x + 1 với m là tham số, đường thẳng △ : y = 2 x - 7 . Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(-1;0); B;C sao cho B,C cùng phía với ∆ và d B ; ∆ + d C ; ∆ = 6 5
A. 0
B. 8
C. 5
D. 4
Cho hàm số y = 1 3 x 3 − 2 m x 2 + m − 1 x + 2 m 2 + 1 (m là tham số). Xác định khoảng cách lớn nhất từ gốc tọa độ O(0;0) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên.
A. 2 9
B. 3
C. 2 3
D. 10 3