1.Cho x+y+z=0. CMR:
a) \(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
b) \(x^7+y^7+z^7=7xyz\left(x^2y^2+y^2z^2+z^2x^2\right)\)
c) \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+z^2\right)\left(x^5+y^5+z^5\right)\)
d) \(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
2. Tìm n∈ N để biểu thức sau là số nguyên tố
a) \(A=n^3-4n^2-4n-1\)
b) \(B=n^3-6n^2+9n-2\)
c) \(C=n^{1975}+n^{1973}+1\)
đố ai lm đc :
nếu \(x+y+z=0, x^2+y^2+z^2=1, thì:x^5+y^5+z^5=\frac{5}{4}(2x^3-x)\)
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
5 like
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
5 like
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
thách ai giải được bài này:
cho:\(x+y+z=0\)
\(x^2+y^2+z^2=1\)thì \(x^5+y^5+z^5=\frac{5}{4}\left(2x^3-x\right)\)
Tính nhanh:
M=\(\frac{z^5\cdot\left(x+y^2\right)\cdot\left(x^2-y^3\right)\cdot\left(x^2-y\right)}{x^2+y^2+z^2+1}\)với x=-4, y=16, z=-5