Điều kiện xác định của phương trình : \(\dfrac{x}{x-2}-\dfrac{2x}{x^2-1}=0\) là :
\(A.x\ne-1;x\ne-2\)
\(B.x\ne2\) và \(x\ne\pm1\)
\(C.x\ne0\)
\(D.x\ne-2,x\ne1\)
câu 53:điều kiện để phân thức \(\dfrac{7x^2-x}{x^2-9}\) được xác định khi :
a.\(x\ne3\) b,\(x\ne9\) c,\(x\ne3;x\ne-3\) d,\(x\ne-9vàx\ne9\)
GIẢI THÍCH VÌ SAO LẠI RA KẾT QUẢ ĐÓ
cho biểu thức A= \(\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\) (với x \(\ne\)0; x\(\ne\)-2; x\(\ne\)2
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A khi x=4
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
Cho 2 biểu thức:
\(A=\dfrac{x+2}{x+5}+\dfrac{-5x-1}{x^2+6x+5}-\dfrac{1}{1+x}\) và
\(B=\dfrac{-10}{x-4}\) với \(x\ne-5;x\ne-1;x\ne4\)
Rút gọn biểu thức A
\(A=\frac{x-3}{x+3}\)ĐKXĐ: \(x\ne\pm3\)và \(B=\frac{x}{x+3}\)ĐKXĐ: \(x\ne\pm3\)
a, Tìm giá trị của A khi x thỏa mãn: \(2x^2-6x=0\)
b, Tìm điều kiện của x để P=A-B có giá trị âm.
Điều kiện để hàm số y=\frac{1+\cos x}{\sin x}y=sinx1+cosx xác định là
x\ne k\pi ,k\in ℤ.x=kπ,k∈Z.
x\ne -\pi +k2\pi ,k\in ℤ.x=−π+k2π,k∈Z.
x\ne \frac{\pi }{2}+k\pi ,k\in ℤ.x=2π+kπ,k∈Z.
x\ne \frac{\pi }{2}+k2\pi ,k\in ℤ.x=2π+k2π,k∈Z.
Cho biểu thức A = \(\dfrac{x}{x+1}-\dfrac{3-3x}{x^2-x+1}+\dfrac{x+4}{x^3+1}\left(x\ne-1\right)\)
a, Rút gọn biểu thức A
b, CMR \(A>0\forall x\ne-1\)
c, Với x > 0. Tính GTLN của A
cho biểu thức A=\(\left\{\dfrac{x}{x^2-4}+\dfrac{2}{2-x}-\dfrac{-1}{x+2}\right\}.(x+2)\) \((x\ne2,x\ne-2)\)
a. Rút gọn A và tính giá trị của A tại x = -1
b. Tìm điều kiện của x để giá trị của ( A ) luôn là sô nguyên
A = \(\frac{x}{x+1}\)-\(\frac{2}{x}\)+\(\frac{2}{x^2+x}\)(x\(\ne\)0; x\(\ne\)-1
Rút gọn A và tìm x để |A| = 1/2