Cho hình trụ có diện tích toàn phần là 4 π và có thiết diện cắt bởi mặt phẳng qua trục là hình vuông. Thể tích khối trụ đã cho bằng
A. 4 π 6 9
B. π 6 12
C. π 6 9
D. 4 π 9
Cho hình nón có thể tích bằng 12 π và diện tích xung quanh bằng 15. Tính bán kính đáy của hình nón biết bán kính là số nguyên dương.
A. 4
B. 3.
C. 6
D. 5
Một hình nón tròn xoay có bán kính bằng chiều cao và bằng 1. Gọi O là tâm của đường tròn đáy. Xét thiết diện qua đỉnh S hình nón là tam giác đều SAB. Tính khoảng cách từ O đến mặt phẳng ( SAC )
A. 3
B. 3 3
C. 2 3
D. 2 3 3
Cho hình nón tròn xoay đỉnh S, đáy là đường tròn tâm O, bán kính đáy r=5. Một thiết diện qua đỉnh là tam giác SAB đều có cạnh bằng 8. Khoảng cách từ O đến mặt phẳng (SAB) bằng
C. 3
Một cái trống trường có bán kính hai đáy đều bằng 25 cm, thiết diện vuông góc với trục và cách đều hai đáy có chu vi 70 π (cm). Chiều cao của trống bằng 80 cm. Biết rằng mặt phẳng chứa trục cắt mặt xung quanh của trống là các parabol (như hình vẽ). Hỏi thể tích của trống?
A. 254259,6 c m 3
B. 127129,8 c m 3
C. 80933,3 c m 3
D. 253333,3 c m 3
Cho hình nón tròn xoay có đường cao h = 20 cm, bán kính đáy r = 25 cm.
a) Tính diện tích xung quanh của hình nón đã cho.
b) TÍnh thể tích của khối nón được tạo bởi hình nón đó.
c) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12 cm. Tính diện tích thiết diện đó.
Cho hình trụ có diện tích xung quanh bằng 4 π , thiết diện qua trục là hình vuông. Tính thể tích V của khối trụ giới hạn bởi hình trụ
A. V = 2 π
B. V = 6 π
C. V = 3 π
D. V = 5 π
Hình nón (N) có thiết diện qua trục là tam giác đều có cạnh bằng 2. Diện tích toàn phần của (N) bằng
A. 4 π
B. 2 π
C. 3 π
D. 5 π
Cho hình nón đỉnh S , đáy là hình tròn tâm O . Thiết diện qua trục của hình nón là tam giác có một góc bằng 120 0 , thiết diện qua đỉnh S cắt mặt phẳng đáy theo dây cung A B = 4 a và là một tam giác vuông. Diện tích xung quanh của hình nón bằng
A. π 3 a 2 .
B. π 8 3 a 2 .
C. π 2 3 a 2 .
D. π 4 3 a 2 .