Đặt (S) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = 4 - x 2 , trục hoành và đường thẳng x = - 2 , x = m - 2 < m < 2 . Tìm giá trị của tham số m để S = 25 3
A. 2
B. 3
C. 4
D. 1
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x 2 + 2 x + 1 trục hoành và hai đường thẳng x= -1;x=3
A. S=64/3.
B. S=56/3.
C. S=37/3.
D. S=21.
Gọi S là diện tích của hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x 4 + x 2 , trục hoành, trục tung và đường thẳng x = 1 . Biết S = a 5 + b , a , b ∈ ℚ . Tính a + b
A. a + b = - 1
B. a + b = 1 2
C. a + b = 1 3
D. a + b = 13 3
Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên a ; b trục hoành và hai đường thẳng x = a , x = b a < b cho bởi công thức:
A. S = ∫ a b f x d x
B. S = π ∫ a b f x d x
C. S = π ∫ a b f 2 x d x
D. S = ∫ a b f x d x
Hình phẳng giới hạn bởi đồ thị hàm số y = f x liên tục trên đoạn [a;b], trục hoành và hai đường thẳng x = a , x = b a ≤ b có diện tích S là
A. S = ∫ a b f x d x
B. S = ∫ a b f x d x
C. S = ∫ a b f x d x
D. S = π ∫ a b f 2 x d x
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f x , trục hoành, đường thẳng x = a, x = b( như hình bên). Biết ∫ a c f x d x = − 2 v à ∫ c b f x d x = 5 . Hỏi S bằng bao nhiêu?
A. 7
B. 5
C. 2
D. 3
Hình phẳng được giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [a;b] trục hoành và hai đường thẳng x = a , x = b a ≤ b có diện tích S là:
A. S = ∫ a b f x d x .
B. S = ∫ a b f x d x .
C. S = ∫ a b f x d x .
D. S = π ∫ a b f 2 x d x .
Hình phẳng được giới hạn bởi đồ thị hàm số y= f(x) liên tục trên đoạn [a;b] trục hoành và hai đường thẳng x = a, x = b a ≤ b có diện tích S là
A. S = ∫ a b f x d x
B. S = - ∫ a b f x d x
C. S = ∫ a b f x d x
D. S = π ∫ a b f 2 x dx
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a, x = b(như hình bên).
Hỏi cách tính S nào dưới đây đúng?
A. S = ∫ a b f x d x .
B. S = ∫ a c f x d x + ∫ c b f x d x .
C. S = − ∫ a c f x d x + ∫ c b f x d x .
D. S = ∫ a c f x d x + ∫ c b f x d x .