`=> 3x . 6 = x`
`=> 18x = x`
`=> x = 0`
\(\dfrac{X}{6}=3X\\ < =>X=18X< =>X=0\)
`x/6=3x`
`<=>x=3x.6`
`<=>x=18x`
`<=>17x=0`
`<=>x=0`
Vậy `S={0}`
`=> 3x . 6 = x`
`=> 18x = x`
`=> x = 0`
\(\dfrac{X}{6}=3X\\ < =>X=18X< =>X=0\)
`x/6=3x`
`<=>x=3x.6`
`<=>x=18x`
`<=>17x=0`
`<=>x=0`
Vậy `S={0}`
Với $x>9$ ta có:
$m(\sqrt{x}-3)P>x+1\Leftrightarrow 4mx>x+1$
$\Leftrightarrow (4m-1)x>1$ $(*)$
*) Nếu $4m-1=0$ thì $(*)\Leftrightarrow 0>1$ (Vô lý)
*) Nếu $4m-1<0$ thì $(*)\Leftrightarrow x<\dfrac{1}{4m-1}$
Đặt $\dfrac{1}{4m-1}=\alpha$ thì $x<\alpha$ và $x>9$
Vậy thì $9<x<\alpha$
$\Rightarrow$ Tập nghiệm của bất phương trình $(*)$ không chứa
hết các giá trị $x>9$
(Vẽ trục số ra bạn sẽ thấy
Ta thấy $9<x<\alpha$ tức là $x$ bị chặn ở 1 khoảng từ $9$ tới $\alpha $
Mà tập nghiệm của BPT là $x$ bị chặn ở 1 khoảng từ $9$ tới dương vô cùng
Vì vậy TH1 đã không chứa hết $x>9$)
Trường hợp này bị loại
*) Nếu $4m-1>0$ thì $(*)\Leftrightarrow x>\dfrac{1}{4m-1}$
Lập luận giống TH2 thì ta có:
$\dfrac{1}{4m-1}\leq 9$
(Đặt $\dfrac{1}{4m-1}=\alpha $ thì $x>\alpha $ và $x>9$
$\Rightarrow \alpha \leq 9$ thì tập nghiệm của BPT mới có thể bao gồm toàn bộ $x>9$)
Nhớ là $4m-1>0$ nữa
Cho \(x,y,z\) dương sao cho \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}=6\). Tìm giá trị lớn nhất của \(P=\dfrac{1}{3x+3y+2z}+\dfrac{1}{3y+3z+2x}+\dfrac{1}{3z+3x+2y}\)
Đạo hàm y 0 = −3x 2 + 6x + m − 1. Hàm số đã cho đồng biến trên khoảng (0; 3) khi và chỉ khi y 0 > 0, ∀x ∈ (0; 3). Hay −3x 2 + 6x + m − 1 > 0, ∀x ∈ (0; 3) ⇔ m > 3x 2 − 6x + 1, ∀x ∈ (0; 3) (∗). Xét hàm số f(x) = 3x 2 − 6x + 1 trên đoạn [0; 3] có f 0 (x) = 6x − 6; f 0 (x) = 0 ⇔ x = 1. Khi đó f(0) = 1, f(3) = 10, f(1) = −2, suy ra max [0;3] f(x) = f(3) = 10. Do đó (∗) ⇔ m > max [0;3] f(x) ⇔ m > 10. Vậy với m > 10 thì hàm số đã cho đồng biến trên khoảng (0; 3).
Cho x>0, y>0 và x+y>= 6. Tìm GTNN của biểu thức P= 3x+2y+6/x + 8/y
Tìm giá trị số nguyên x để A=\(\dfrac{\sqrt{3x-2}}{x-1}+\dfrac{6}{\sqrt{13-2x}}\) là số nguyên?
Cho x>0,y>0 thỏa mãn x+y>=6. Hãy tính GTNN của biểu thức:
M=3x + 2y+ 6/x + 8/y
Rút gọn:
\(\dfrac{1}{x}+\dfrac{2}{x-3}-\dfrac{6}{x^2-3x}\)
1a. rút gọn biểu thức sau A = \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{4-9x^2}\)
b. biến đổi biểu thức sau thành phân thức đại số B = \(\dfrac{1}{2}+\dfrac{x}{1-\dfrac{x}{x+2}}\)
a, tính GT của đa thức \(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\) tại \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
b, so sánh \(\sqrt{2017^2-1}-\sqrt{2016^2-1}và\dfrac{2.2016}{\sqrt{2017^2-1}-\sqrt{2016^2-1}}\)
c, tính GTBT: \(sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
d, biết \(\sqrt{5}\) là số hữu tỉ, hãy tìm các số nguyên a,b tm::
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
(1) giải pt quy về \(ax^2+bx+c=0\)
1) \(x^2=3x\) 2) \(x^2-3x=4\)
3) \(x^4-5x^2+6=0\) 4) \(x^3=9x\)
5) \(\left(x+2\right)\left(x-3\right)=x^2-4\) 6) \(\dfrac{x+11}{x^2-1}-\dfrac{x-1}{x+1}=\dfrac{2\left(x+7\right)}{x+1}\)
giúp mk vs mk cần gấp