Lời giải:
$2a=0,5294\times (2a+16x)$
$2a=1,0588a+8,4704x$
$2a-1,0588a=8,4704x$
$0,9412a=8,4704x$
$a=8,4704x:0,9412=9x$
Lời giải:
$2a=0,5294\times (2a+16x)$
$2a=1,0588a+8,4704x$
$2a-1,0588a=8,4704x$
$0,9412a=8,4704x$
$a=8,4704x:0,9412=9x$
Quy đồng mẫu các phân thức sau:(có thể tính luôn càng tốt ạ)
a) \(\dfrac{a+x}{a^2x}\);\(\dfrac{x+b}{x^2b}\);\(\dfrac{b+a}{b^2a}\)
b) \(\dfrac{a-x}{6x^2-ax-2a^2}\);\(\dfrac{a+x}{3x^2+4ax-4a^2}\)
c) \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)
Mn giúp mik vs nhaaa! Tầm trc cmai nhoaaa!
Thanks mn trc ạ!!!
1)cho Q=\(\dfrac{a^4+a^3-a^2-2a-2}{a^4+2a^3-a^2-4a-2}\)
Tìm GTNN của Q
2)cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
CMR: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
\(\)Bài 1: Rút gọn:
M= (\(\dfrac{2a}{2a+b}\)-\(\dfrac{4a^2}{4a^2+4ab+b^2}\)):(\(\dfrac{2a}{4a^2-b^2}+\dfrac{1}{b-2a}\))
Bài 2: Cho biểu thức:
P=(\(\dfrac{a+6}{3a+9}-\dfrac{1}{a+3}\)):\(\dfrac{a+2}{27a}\)
a) Tìm ĐKXĐ và rút gọn
b) Tính giá trị của P tại a=1
Cho \(\dfrac{2a+3c}{2b+3d}\)=\(\dfrac{2a-3c}{2b-3d}\). Chứng minh\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
Kết quả của phép tính \(\dfrac{a-3}{2a-1}+\dfrac{2a+1}{a+3}\)bằng
Rút gọn :
A,\(\dfrac{2ax^2-4ax+2a}{5b-5b^2}\)
B,\(\dfrac{(x+y)^2-z^2}{x+y+z}\)
Rút gọn:
\(a,\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)
\(b,\dfrac{\left(x+y^2\right)-z^2}{x+y+z}\)
Cho a, b, c > 0. CMR: \(\dfrac{2a}{b+c}+\dfrac{b+c}{2a}\ge2\)
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}\)+\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}\)≥\(\dfrac{a+b+c}{9}\)