\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\)
=\(\dfrac{1\left(\sqrt{3}+\sqrt{2}+1\right)}{\left(\sqrt{3}+\sqrt{2}-1\right)\left(\sqrt{3}+\sqrt{2}+1\right)}\)
=\(\dfrac{\sqrt{3}+\sqrt{2}-1}{4+2\sqrt{6}}\)
làm tiếp bạn nhé nhỡ giửi:
= \(\dfrac{\left(\sqrt{3}+\sqrt{2}-1\right)\left(4-2\sqrt{6}\right)}{\left(4-2\sqrt{6}\right)\left(4+2\sqrt{6}\right)}\)
=-\(\dfrac{\left(\sqrt{3}+\sqrt{2}-1\right)\left(4-2\sqrt{6}\right)}{8}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}-1}{4+2\sqrt{6}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{2}-1\right)\left(4-2\sqrt{6}\right)}{-8}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{2}-1\right)\cdot\left(\sqrt{6}-2\right)}{4}\)