\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{48\cdot49\cdot50}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-...+\dfrac{1}{48\cdot49}-\dfrac{1}{49\cdot50}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{49\cdot50}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2450}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{612}{1225}\)
\(=\dfrac{306}{1225}\)