a: Xét ΔAMC và ΔAMB có
AM chung
MC=MB
AC=AB
Do đó: ΔAMC=ΔAMB
b: Xét ΔAEM vuông tại E và ΔAQM vuông tại Q có
AM chung
\(\widehat{EAM}=\widehat{QAM}\)
Do đó: ΔAEM=ΔAQM
c: Ta có: ΔAEM=ΔAQM
nên AE=AQ
Xét ΔABC có AE/AB=AQ/AC
nên EQ//BC
a: Xét ΔAMC và ΔAMB có
AM chung
MC=MB
AC=AB
Do đó: ΔAMC=ΔAMB
b: Xét ΔAEM vuông tại E và ΔAQM vuông tại Q có
AM chung
\(\widehat{EAM}=\widehat{QAM}\)
Do đó: ΔAEM=ΔAQM
c: Ta có: ΔAEM=ΔAQM
nên AE=AQ
Xét ΔABC có AE/AB=AQ/AC
nên EQ//BC
Cho tam giác ABC cân tại A ( góc A < 90 độ ) , kẻ BH vuông góc với AC tại H . Tren đáy BC lấy M , vẽ MD vuông góc với AB tại D ; ME vuông góc với AC tại E : MF vuông góc với BH tại F .
a, CM tam giác DBM = tam giác FMB.
b, CM DF song song với BC
Cho tam giác ABC cân tại A . Tia phân giác BAC cắt cạnh BC tại M
a) Chứng minh tam giác AMB và tam giác AMC
b) Kẻ ME vuông góc với AB (E thuộc AB) , kẻ MF vuông góc với AC (F thuộc AC).CM : tam giác AEF
c) CM : AM vuông góc EF
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I . CM : BE = BI
Vẽ hình nữa nhé
Cho tam giác ABC cân tại A (góc A < 90°). Vẽ AH vuông góc BC tại H
A) cm rằng : tam giác ABH = tam giác ACH rồi suy ra AH là tia phân giác góc A
B) từ H vẽ HE vuông góc AB tại E, HF vuông góc AC tại F .Cm rằng tam giác EAH = tam giác FAH rồi suy ra tam giác HEF là tam giác cân .
C) Đường thẳng vuông góc với AC tại C cắt tia AH tại K. Cm rằng EH // BK
D) Qua A vẽ đường thẳng song song với BC cắt tia HF tại N. Trên tia HE lấy điểm M sao cho HM =HN. Chứng minh rằng M,A,N thẳng hàng
cho tam giác ABC cân tại A. Gọi M là trung điểm của BC
a) CM:tam giác ABM=tam giácACM
b) Vẽ MD vuống góc AB tại D ,vẽ ME vuông góc AC tại E.CM:MD=ME
c)Gọi I là giao điểm của DE và AM .CM:I là trung điểm của DE
d) CM:DE song song với BC
cho tam giác abc cân tại a.gọi m là trung điểm bc
a,c/m tam giác abm=tam giác acm;am vuông góc vs bc(c/m)
b,kẻ me vuông góc ab tại e,me vuông góc ac tại f.chứng minh tam giác emf cân tại m
c,ef//bc(chứng minh song song)
GIẢI NHANH GIÚP MÌNH VỚI Ạ!!!!!!
cho tam giác ABC vuông tại A,AB=9cm; AC=12cm.Trên tia BC lấy D sao cho BD=BA.Kẻ đoạn thẳng D vuông với BC. Đoạn thẳng này cắt AC tại E, cắt AB tại K
a) tính BC?
b) cm tam giác ABE=tam giác DBE => BE là tia phân giác của góc ABC
c)AC song song DK
d)kẻ đoạn thẳng A vuông góc với BC tại H, đoạn thẳng này cắt BE tại M. CM tam giác AME cân
Cho tam giác ABC vuông tại B ( BC < BA ) lấy điểm E sao cho B là trung điểm của CE
a) C/m AB là tia phân giác của góc CAE
b) Vẽ CM vuông góc với AE tại M, CM cát AB tại H vẽ HN vuong góc với CA tại N. C/m tam giac MAN cân và MN song song với CE
c) So sánh HM và HC.
d) Tìm điều kiện của tam giác ABC để tam giác CMN cân tại N
cho tam giác ABC cân tại A có Góc C= 30 độ .Gọi AD là đường phân giác ( D thuộc BC ). Vẽ DE vuông góc với AB tại E và DF vuông góc với AC tại F. CM rằng:
a) Tam giác DEF đều
b) Tam giác BED= Tam giác CFD
c) Từ B vẽ đường thảng song song với AD cắt AC tại M. Tam giác ABM đều