`A=(6sqrtx+8)/(3sqrtx+2)`
`=(6sqrtx+4+4)/(3sqrtx+2)`
`=2+4/(3sqrtx+2)>2AAx>=0(1)`
Vì `3sqrtx>=0`
`=>3sqrtx+2>=2`
`=>4/(3sqrtx+2)<=2`
`=>A<=4(2)`
`(1)(2)=>2<A<=4`
Mà `A in ZZ`
`=>A in {3,4}`
`**A=3`
`<=>4/(3sqrtx+2)=1`
`<=>4=3sqrtx+2`
`<=>3sqrtx=2`
`<=>x=4/9`
`**A=4`
`<=>4/(3sqrtx+2)=2`
`<=>6sqrtx+4=4`
`<=>6sqrtx=0`
`<=>sqrtx=0`
`<=>x=0`
đk: \(x\ge0\)
A = \(\dfrac{2\left(3\sqrt{x}+2\right)+4}{3\sqrt{x}+2}\)
= \(2+\dfrac{4}{3\sqrt{x}+2}\)
Để A \(\in Z\)
<=> \(4⋮3\sqrt{x}+2\)
Ta có bảng:
\(3\sqrt{x}+2\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | \(\varnothing\) | \(\varnothing\) | 0 | \(\varnothing\) | \(\dfrac{4}{9}\) | \(\varnothing\) |
tm | tm |