Đặt x = \(\frac{a-b}{a+b}\), y = \(\frac{b-c}{b+c}\), z = \(\frac{c-a}{c+a}\)
Chứng minh x + y + z + xyz =0
Đặt x = \(\frac{a-b}{a+b}\), y = \(\frac{b-c}{b+c}\), z = \(\frac{c-a}{c+a}\)
Chứng minh x + y + z + xyz =0
cho a,b,c thõa mãn abc khác 0
Đặt \(x=\frac{a^2+b^2-c^2}{2ab};y=\frac{a^2+c^2-b^2}{2ac};z=\frac{b^2+c^2-a^2}{2bc}\)
chứng minh rằng nếu x+y+z=1 thì xyz =-1v
Cho a,b,c khác 0 và cho x,y,z tùy ý. Chứng minh rằng: \(\frac{bc\left(a-x\right)\left(a-y\right)\left(a-z\right)}{\left(a-b\right)\left(a-c\right)}+\frac{ca\left(b-x\right)\left(b-y\right)\left(b-z\right)}{\left(b-c\right)\left(b-a\right)}+\frac{ab\left(c-x\right)\left(c-y\right)\left(c-z\right)}{\left(c-a\right)\left(c-b\right)}=abc-xyz\)
Đặt x = \(\frac{a-b}{a+b}\), y = \(\frac{b-c}{b+c}\), z = \(\frac{c-a}{c+a}\)
Chứng minh x + y + z + xyz =0
a) Cho x, y, z > 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Chứng minh rằng : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
b) Cho a, b, c là độ dài ba cạnh của một tam giác . Chứng minh :
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
c) Cho a, b, c > 0 thỏa mãn : abc = ab + bc + ca . Chứng minh :
\(\frac{1}{a+2b+3c}+\frac{1}{b+2c+3a}+\frac{1}{c+2a+3b}\le\frac{3}{16}\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) chứng minh rằng x^2/a^2 +y^2/b^2 +z^2/c^2 = 1
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\) =0 Chứng minh rằng x^2/a^2 + y^2/b^2 +z^2/c^2 =1
Cho a,b,c khác 0 và \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Chứng minh rằng : x + y + z = 0