Cho a,b là các số thực và hàm số f x = x - a - 1 x 2 - 4 k h i x ≠ 2 2 x - b k h i x = 2 liên tục tại x=2. Tính giá trị của biểu thức T=a+b.
A. T= 31 8
B. T=5
C. T=3
D. T= 39 8
Cho f(x) là hàm đa thức thỏa \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}=a\left(a\in R\right)\) và tồn tại \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=T\left(T\in R\right).\) Tìm T theo a.
Cho hàm số f(n)= a n + 1 + b n + 2 + c n + 3 ( n ∈ N * ) với a, b, c là hằng số thỏa mãn a+b+c=0. Khẳng định nào sau đây đúng?
A. lim x → + ∞ f ( n ) = - 1
B. lim x → + ∞ f ( n ) = 1
C. lim x → + ∞ f ( n ) = 0
D. lim x → + ∞ f ( n ) = 2
Đạo hàm của hàm số \(y=\left(-x^2+3x+7\right)^7\) là:
A. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
B. \(y'=7\left(-x^2+3x+7\right)^6\)
C. \(y'=\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
D. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
Đạo hàm của hàm số f ( x ) = ( x + 2 ) ( x − 3 ) bằng biểu thức nào sau đây?
A. 2x+ 5
B. 2x – 7
C. 2x – 1
D. 2x - 5
Đạo hàm của hàm số \(y=\left(x^2-\dfrac{2}{x}\right)^3\)là:
A. \(y'=6\left(x+\dfrac{1}{x^2}\right)\left(x^2-\dfrac{2}{x}\right)^2\)
B. \(y'=3\left(x^2-\dfrac{2}{x}\right)^2\)
C. \(y'=6\left(x-\dfrac{1}{x^2}\right)\left(x^2-\dfrac{2}{x}\right)^2\)
D. \(y'=6\left(x-\dfrac{1}{x}\right)\left(x^2-\dfrac{2}{x}\right)^2\)
số gia của hàm số y = f(x) = \(\dfrac{^{x^3}}{2}\) ứng với số gia △t của đối số tại x\(_0\) = -1 là :
Tập giá trị của hàm số y = sin 2 x + 3 cos 2 x + 1 là đoạn [a;b]. Tính tổng T=a+b?
A.T=1
B.T=2
C.T=0
D.T=-1
Một đoàn tàu chuyển động khởi hành từ một nhà ga. Quãng đường s (mét) đi được của đoàn tàu là một hàm số của thời gian t (phút). Ở những phút đầu tiên, hàm số đó là s = t 2 .
Hãy tính vận tốc trung bình của chuyển động trong khoảng t ; t o với t o = 3 và t = 2 ; t = 2 , 5 ; t = 2 , 9 ; t = 2 , 99 .
Nêu nhận xét về những kết quả thu được khi t càng gần t o = 3 .