Cho F ( x ) = cos 2 x - sin x + C là nguyên hàm của hàm số f(x). Tính f ( π )
A. f ( π ) = - 3
B. f ( π ) = 1
C. f ( π ) = - 1
D. f ( π ) = 0
Cho hàm f(x) có đạo hàm trên đoạn [ 0 ; π ] , f ( 0 ) = π , ∫ 0 π f ' ( x ) dx = 3 π . Tính f ( π )
A. f ( π ) = 0
B. f ( π ) = - π
C. f ( π ) = 4 π
D. f ( π ) = 2 π
Cho hàm số f(x)=3 sinx+2. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 mf 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng (0;π/2). Số tập con của S bằng
A. 1
B. 2.
C. 4.
D. 16.
Biết F(x) là một nguyên hàm của hàm số f(x)=sin2 x+cosx. Giá trị F(π/2)-F(0) bằng
A. 2.
B. 1
C. -1
D. 4.
Tìm nguyên hàm của hàm số f ( x ) = 2008 + ln 2 x x có
dạng F ( x ) = a ln x + ln x 3 b + C . Khi đó tổng S
= a + b là?
A. 2012
B. 2010
C. 2009
D. 2011
Biết hàm số F ( x ) = a x 3 + ( a + b ) x 2 + ( 2 a - b + c ) x + 1 là một nguyên hàm của hàm số f ( x ) = 3 x 2 + 6 x + 2 . Tổng a+b+c là:
A. 5
B. 4
C. 3
D. 2
Cho hàm số f ( x ) = 1 + c o s x ( x - π ) 2 k h i x ≠ π m k h i x = π Tìm m để f(x) liên tục tại x = π
A. m = 1 4
B. m = - 1 4
C. m = 1 2
D. m = - 1 2
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f(0)=0, ∫ 0 π 4 f ' x 2 d x = 2 và ∫ 0 π 4 sin 2 x f ( x ) d x = 1 2 Tích phân ∫ 0 π 4 f x d x bằng
A. -1/2
B. 1/2
C. -1/4
D. 1/4
Xác định giá trị a, b, c để hàm số F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của f ( x ) = ( x 2 - 3 x + 2 ) e - x
A. a = -1; b = 1; c = -1
B. a = -1; b = -5; c = -7
C. a = 1; b = -3; c = 2
D. a = 1; b = -1; c = 1
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên R và có đồ thị của hàm số f'(x) như hình vẽ. Biết ∫ 0 3 x + 1 f ' x d x = a và ∫ 0 1 f ' x d x = b , ∫ 1 3 f ' x d x = c , f 1 = d . Tích phân ∫ 0 3 f x d x bằng
A. -a+b+4c-5d.
B. -a+b-3c+2d.
C. -a+b-4c+3d.
D. -a-b-4c+5d.