Đáp án B
Số tam giác có các đỉnh là đỉnh của đa giác là C 12 3 = 220
Đáp án B
Số tam giác có các đỉnh là đỉnh của đa giác là C 12 3 = 220
Cho đa giác lồi có 12 đỉnh. Số tam giác có các đỉnh là đỉnh của đa giác là
A. 1320
B. 202
C. 220
D. 1230
Cho đa giác lồi 14 đỉnh. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của đa giác đã cho. Chọn ngẫu nhiên trong X một tam giác. Tính xác suất để tam giác được chọn không có cạnh nào là cạnh của đa giác đã cho.
A . 15 26
B . 1 11
C . 10 11
D . 7 13
Cho đa giác lồi (H) có 22 cạnh. Gọi X là tập hợp của các tam giác có 3 đỉnh là ba đỉnh của (H). Chọn ngẫu nhiên hai tam giác trong X. Tính xác suất để chọn được 1 tam giác có 1 cạnh là cạnh của đa giác (H) và 1 tam giác không có cạnh nào là cạnh của đa giác (H) (Kết quả làm tròn đến số thập phân thứ ba)
A. 0,374
B. ,0375
C. 0,376.
D. 0,377
Cho một đa giác lồi 10 cạnh. Có tất cả bao nhiêu tam giác mà đỉnh trùng với đỉnh của đa giác lồi?
A. A 10 3
B. 3 10
C. 10 3
D. C 10 3
Cho một đa giác lồi 10 cạnh. Có tất cả bao nhiêu tam giác mà đỉnh trùng với đỉnh của đa giác lồi?
A. A 10 3
B. 3 10
C. 10 3
D. C 10 3
Một đa giác lồi có 10 đỉnh. Chọn ngẫu nhiên ba đỉnh của đa giác và nối chúng lại với nhau ta được một tam giác. Tính xác suất để tam giác thu được có ba cạnh là ba đường chéo của đa giác đã cho.
A. 11 12
B. 1 4
C. 3 8
D. 5 12
Trên mặt phẳng cho hình 7 cạnh lồi. Xét tất cả các tam giác có đỉnh là các đỉnh của hình đa giác này. Hỏi trong số các tam giác đó, có bao nhiêu tam giác mà cả 3 cạnh của nó đểu không phải là cạnh của hình 7 cạnh đã cho ở trên?
A. 7
B. 9
C. 11
D. 13
cho đa giác 12 cạnh. có bao nhiêu tam giác mà 3 đỉnh của tam giác là đỉnh của đa giác đã cho
Cho đa giác có 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng
A. 12 . 8 C 12 3
B. C 12 8 - 12 . 8 C 12 3
C. C 12 3 - 12 - 12 . 8 C 12 3
D. 12 + 12 . 8 C 12 3