d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2
= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2-2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab
=4a2+4b2+4c2
d)
( a + b + c )\(^2\) + ( a - b - c)\(^2\) + ( b - c - a )\(^2\) + ( c - a - b )\(^2\)
= ( a + b + c )\(^2\) + ( a + b - c)\(^2\) + ( a - b - c )\(^2\) + ( a - b + c )\(^2\)
= ( a + b )\(^2\) + 2c ( a + b ) + c\(^2\) + ( a + b )\(^2\) - 2c ( a + b ) + c\(^2\) + ( a - b )\(^2\) - 2c( a-b ) + c\(^2\) + ( a - b )\(^2\) + 2c ( a - b ) + c\(^2\)
= 2( a + b )\(^2\) + 2c\(^2\) + 2( a - b )\(^2\) + 2c\(^2\)
= 2\([\left(a+b\right)^2+\left(a-b\right)^2]\) + 4c\(^2\)
= 4 ( \(a^2\) + \(b^2\) + \(c^2\) )