C/tỏ rằng các phương trình sau luôn có nghiệm với mọi a, b:
\(x^2+\left(a+b\right)x-2\left(a^2-a+b^2\right)=0\)
Tìm điều kiện của a, b, c để các phương trình sau có nghiệm kép:
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\)
CMR: \(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\) có nghiệm với mọi a,b,c
Chứng minh rằng phương trình \(\left(a^4-b^4\right)x^2-2\left(a^6-ab^5\right)x+a^8-a^2b^6=0\)luôn luôn có nghiệm với mọi a,b
Chứng minh rằng phương trình sau có nghiệm với mọi a , b :
a) x(x-a) + x(x-b) + (x-a)(x-b)
b) \(x^2+\left(a+b\right)x-2\left(a^2-ab+b^2\right)=0\)
CHỨNG MINH RẰNG PHƯƠNG TRÌNH BẠC 2: \(\left(a+b\right)^2.x^2-\left(a-b\right).\left(a^2-b^2\right).x-2ab.\left(a^2+b^2\right)=0.\)LUÔN CÓ 2 NGHIỆM PHÂN BIỆT
Chứng minh các phương trình sau luôn có nghiệm với mọi giá trị của tham số m :
\(\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3=0\)
Cho a,b là các số thực khác 0. Biết rằng phương trình \(a\left(a-x\right)^2+b\left(x-b\right)^2=0\) có nghiệm duy nhất
Chứng minh \(\left|a\right|=\left|b\right|\)
tìm nghiệm x của phương trình
\(\left(x-a\right)\times\left(x-b\right)+\left(x-b\right)\times\left(x-c\right)+\left(x-c\right)\times\left(x-a\right)=0\)