Công thức lũy thừa và bậc căn số
* \(a^m\)\(a^n\) = \(a^{m+n}\) => * \(\sqrt[m]{\sqrt[n]{a}}\) = \(\sqrt[mn]{a}\)
* \(\frac{a^m}{a^n}\) = \(a^{m-n}\) =>* \(\left(\sqrt[n]{a}\right)^m\) = \(\sqrt[n]{a^m}\)
* \(\left(a^m\right)^n\) = \(a^{mn}\) =>* \(\sqrt[n]{\frac{a}{b}}\) = \(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\)
* \(\left(abc\right)^n\) = \(a^n\) \(b^n\) \(c^n\) => * \(\sqrt[n]{abc}\) = \(\sqrt[n]{a}\) \(\sqrt[n]{b}\) \(\sqrt[n]{c}\)