Xét các khẳng định sau đây xem khẳng định nào đúng, khẳng định nào sai?
a) Qua một điểm, có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
b) Qua một đường thẳng, có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước.
c) Qua một điểm, có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước.
d) Cho hai đường thẳng a và b. Nếu có mặt phẳng (α) không chứa cả a và b thì a và b chéo nhau.
Cho các phát biểu sau, số phát biểu đúng:
1. Có một và chỉ một đường thẳng đi qua 2 điểm phân biệt
2. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt
3. Nếu 1 đường thẳng có 1 điểm thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó
4. Tồn tại 4 điểm không cùng thuộc một mặt phẳng
5. Tồn tại 4 điểm cùng thuộc một mặt phẳng
6. Nếu 2 mặt phẳng phân biệt có 1 điểm chung thì chúng sẽ còn 1 điểm chung khác
7. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng có thể không đúng
A. 3
B. 4
C. 5
D. 6
Cho hai đường thẳng cắt nhau Ox, Oy và 2 điểm A, B không nằm trong mặt phẳng (Ox, Oy). Biết rằng đường thẳng AB và mặt phẳng (Ox, Oy) có điểm chung I. Một mặt phẳng α thay đổi luôn chứa AB và cắt Ox tại M, cắt Oy tại N. Ta chứng minh được rằng đường thẳng MN luôn đi qua một điểm cố định khi α thay đổi. Điểm đó là
A. O
B. A
C. B
D. I
Xét các mệnh đề sau:
(I) Có một và chỉ một đường thẳng đi qua 2 điểm phân biệt.
(II) Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt.
(III) Nếu 2 mặt phẳng có một điểm chung thì chúng có duy nhất một điểm chung khác nữa.
(IV) Nếu 1 đường thẳng có 2 điểm phân biệt thuộc mặt phẳng thì mọi điểm của đường thẳng đó đều thuộc mặt phẳng.
Số mệnh đề sai là:
A. 1.
B. 2.
C. 3.
D. 4.
Trong các cách sau, có bao nhiêu cách để xác định một mặt phẳng
1. Đi qua 3 điểm phân biệt
2. Đi qua 1 điểm và chứa 1 đường thẳng không đi qua điểm đó
3. Đi qua 2 đường thẳng bất kì
4. Đi qua đường thẳng (d1) và song song với đường thẳng (d2) cho trước, sao cho d1 và d2 không cắt nhau
5. Song song với 2 đường thẳng cắt nhau
6. Song song với 2 đường thẳng chéo nhau
7. Đi qua 1 điểm và song song với một đường thẳng cho trước
8. Đi qua 1 điểm và song song với một mặt phẳng cho trước
A. 2
B. 3
C. 4
D. 5
Cho hai mặt phẳng (α) và (β) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt (α) ở A và cắt (β) ở B ta lấy hai diểm cố định S 1 , S 2 không thuộc (α), (β). Gọi M là một điểm di động trên (β). Giả sử các đường thẳng M S 1 , M S 2 cắt (α) lần lượt tại M 1 và M 2 .
a) Chứng minh rằng M 1 M 2 luôn luôn đi qua một điểm cố định.
b) Giả sử đường thẳng M 1 M 2 cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng.
c) Gọi b là một đường thẳng thuộc mặt phẳng (β) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm M 1 và M 2 di động trên hai đường thẳng cố định thuộc mặt phẳng (α).
Xét các mệnh đề:
(I) Mặt phẳng hoàn toàn được xác định khi biết nó đi qua ba điểm.
(II) Mặt phẳng hoàn toàn được xác định khi biết nó đi qua một điểm và chứa 1 đường thẳng.
(III) Mặt phẳng hoàn toàn được xác định khi biết nó chứa hai đường thẳng cắt nhau.
Số khẳng định đúng là
A. 0
B. 1
C. 2
D. 3
Trong các điều khẳng định sau đây, điều nào đúng?
a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
b) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.
d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Một đoạn thẳng AB không vuông góc với mặt phẳng (α) cắt mặt phẳng này tại trung điểm O của đoạn thẳng đó. Các đường thẳng vuông góc với (α) qua A và B lần lượt cắt mặt phẳng (α) tại A' và B'.
Chứng minh ba điểm A', O, B' thẳng hàng và AA' = BB'
Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD.
a) Tìm giao điểm N của đường thẳng CD và mp(SBM).
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC).
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC).
d) Tìm giao điểm P của SC và mặt phẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM).