Xét các số dạng abc – (10d+e) sao cho thuộc tập {101,202,303,404,505,606,707,808,909}
Trường hợp 1 nếu d lấy từ 0 đên 8 thì với mỗi d ta chọn e lấy từ 0 đên 9 và ta có 0=<10d+e <=89
Khi đó luôn luôn tồn tại abc sao cho 909 >= abc - (10d+e) >=101
Vây mỗi d ta có 10 giá trị e và 9 giá trị abc thoả mãn vậy số có dạng thoả mãn là 9x10x9 = 810 số.
Trường hợp d=9.
Trường hợp e=0 ta có 9 số abc sao cho 909>=abc -90 >=101.
Trường hợp e=1 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 91 = 908 < 909.
Trường hợp e=2 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 92 = 907 < 909.
Trường hợp e=3 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 93 = 906 < 909.
Trường hợp e=4 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 94 = 905 < 909.
Trường hợp e=5 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 95 = 904 < 909.
Trường hợp e=6 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 96 = 903 < 909.
Trường hợp e=7 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 97 = 902 < 909.
Trường hợp e=8 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 98 = 901 < 909.
Trường hợp e=9 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 99 = 900 < 909.
Vậy số trường hợp là 9x8+9= 81 => Tống số trường hợp là 810+81= 891.