Cho hai số phức z, ω thỏa mãn z - 1 = z + 3 - 2 i ; ω = z + m + i với m ∈ ℝ là tham số. Giá trị của m để ta luôn có là
A.
B.
C.
D.
Cho số phức z thỏa mãn | ( z + 2 ) i + 1 | + | ( z ¯ - 2 ) i - 1 | = 10 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z|. Tính tổng S=M+m.
Số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 2 = z và ( z + i ) ( z ¯ - i ) là số thực.
Giá trị của biểu thức S=a+2b bằng bao nhiêu?
A. S=-1
B. S=1
C. S=0
D. S=-3
Cho các số phức z 1 = 1 , z 2 = 2 − 3 i và các số z thỏa mãn z − 1 − i + z − 3 + i = 2 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − z i + z − z 2 . Tính tổng
A. S = 4 + 2 5 .
B. S = 5 + 17 .
C. S = 1 + 10 + 17 .
D. S = 10 + 2 5 .
Cho số phức z thỏa mãn điều kiện z - 1 - i + z + 1 + 3 i = 6 5 .
Giá trị lớn nhất của z - 2 - 3 i là
A. 4 5
B. 2 5
C. 6 5
D. 5 5
Cho số phức z thỏa mãn điều kiện z - 1 - i + z + 1 + 3 i = 6 5 . Giá trị lớn nhất của z - 2 - 3 i là
Cho số phức z thỏa mãn 1 + i z là số thực và z - 2 = m với m ∈ ℝ
Gọi m 0 là một giá trị của m để có đúng một số phức thỏa mãn bài toán.
Khi đó
A.
B.
C.
D.
Cho số phức z thỏa mãn z - 2 + i + z + 1 - i = 13 Tìm giá trị nhỏ nhất m của biểu thức z + 2 - i
Xét các số phức z thỏa mãn thiết | z + 2 - i| + | z - 4 - 7i|= 6 2 . Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của |z – 1 + i|. Tính P = m + M.