Đáp án B
Ta có:
Tập hợp điểm M biểu diễn w là trung trực của nên là đường thẳng d qua trung điểm I(m-1;2) và có n → ( 4 ; - 2 )
Đặt
Do ω ⩾ 2 5 nên M nằm ngoài đường tròn tâm O bán kính R= 2 5
Đáp án B
Ta có:
Tập hợp điểm M biểu diễn w là trung trực của nên là đường thẳng d qua trung điểm I(m-1;2) và có n → ( 4 ; - 2 )
Đặt
Do ω ⩾ 2 5 nên M nằm ngoài đường tròn tâm O bán kính R= 2 5
Cho số phức z thỏa mãn |z - 3 - 4i| = 5 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = | z + 2 | 2 - | z - 1 | 2 . Tính mô đun của số phức ω = M + mi
A. | ω | = 1258
B. | ω | = 3 137
C. | ω | = 2 134
D. | ω | = 2 309
Cho số phức z thỏa mãn z = i − m 1 − m m − 2 i , m ∈ ℝ là tham số và z . z ¯ = 1 5 . Khi đó số giá trị thỏa mãn là:
A. 2
B. 1
C. 0
D. 3
Cho số phức z thỏa mãn 1 + i z là số thực và z - 2 = m với m ∈ ℝ
Gọi m 0 là một giá trị của m để có đúng một số phức thỏa mãn bài toán.
Khi đó
A.
B.
C.
D.
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z. z ¯ = 1 và |z - 3 + i|. Tìm số phần tử của S
A. 1.
B. 2.
C. 3.
D. 4
Số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 2 = z và ( z + i ) ( z ¯ - i ) là số thực.
Giá trị của biểu thức S=a+2b bằng bao nhiêu?
A. S=-1
B. S=1
C. S=0
D. S=-3
Cho số phức z = m + 1 1 + m 2 i − 1 , m ∈ ℝ . Số các giá trị nguyên của m để z − i < 1 là
A. 0
B. 1
C. 4
D. Vô số
Xét các số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn đồng thời hai điều kiện z + y i = z ¯ + 4 - 3 i và z + 1 - i + z - 2 + 3 i đạt giá trị nhỏ nhất. Giá trị P=a+2b là:
A. P= - 61 10
B. P= - 252 50
C. P= - 41 5
D. P= - 18 5
Cho số phức z thỏa mãn | ( z + 2 ) i + 1 | + | ( z ¯ - 2 ) i - 1 | = 10 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z|. Tính tổng S=M+m.
Cho số phức z thỏa mãn 1 + i z là số thực và z - 2 = m với m thuộc R Gọi m 0 là một giá trị của m để có đúng một số phức thỏa mãn bài toán. Khi đó