tam giác ABM và tam giác KBM có
BK=BA
BM là cạnh chung
BM là phân giác góc B = > góc ABM = góc KBM
=> tam giác ABM = tam giác KBM ( c.g.c)
b: Ta có: ΔABM=ΔKBM
nên \(\widehat{BAM}=\widehat{BKM}=90^0\)
Xét ΔAME vuông tại A và ΔKMC vuông tại K có
MA=MK
\(\widehat{AME}=\widehat{KMC}\)
Do đó: ΔAME=ΔKMC
Suy ra: ME=MC
\(a,\left\{{}\begin{matrix}\widehat{ABM}=\widehat{KBM}\left(t/c.phân.giác\right)\\AB=BK\left(gt\right)\\BM.chung\end{matrix}\right.\Rightarrow\Delta ABM=\Delta KBM\left(c.g.c\right)\\ b,\Delta ABM=\Delta KBM\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{MKB}=90^0\\MA=MK\end{matrix}\right.\\ \left\{{}\begin{matrix}\widehat{MAE}=\widehat{MKC}\left(=90^0\right)\\MA=MK\\\widehat{AME}=\widehat{KMC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AME=\Delta KMC\left(cgv-gn\right)\\ \Rightarrow ME=MC\)
\(c,\Delta BEC\) có CA là đường cao \(\left(CA\perp BE\right)\), EK là đường cao \(\left(EK\perp BC\right)\), EK cắt CA tại M nên M là trực tâm
Do đó BM là đường cao thứ 3
Mà \(M\in BI\) nên BI là đường cao thứ 3 của tam giác BEC
\(\Rightarrow BI\perp EC\)
\(d,\) Vì \(AB=BK\) nên tam giác ABK cân tại B
\(\Rightarrow\widehat{BAK}=\dfrac{180^0-\widehat{ABK}}{2}\left(1\right)\)
Ta có \(\left\{{}\begin{matrix}AB=BK\\AE=CK\end{matrix}\right.\Rightarrow AB+AE=BK+KC\Rightarrow BE=BC\)
Do đó tam giác BEC cân tại B
\(\Rightarrow\widehat{BEC}=\dfrac{180^0-\widehat{ABK}}{2}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{BAK}=\widehat{BEC}\)
Mà 2 góc này ở vị trí đồng vị nên \(AK//EC\)
\(\Rightarrow AK\perp BI\left(EC\perp BI\right)\) hay \(AK\perp MQ\left(Q\in BI;M\in BI\right)\)
Xét tam giác AQK có KH là đường cao \(\left(KH\perp AQ\right)\), QM là đường cao \(\left(AK\perp QM\right)\) và KH cắt QM tại M nên M là trực tâm
Do đó AM là đường cao thứ 3 hay \(AM\perp QK\)
Mà \(AM\perp PK\left(gt\right)\)
Nên PK trùng QK hay 3 điểm K,P,Q thẳng hàng