Ta có: Vì \(n\) là số lẻ (theo giả thiết) nên \(n\) sẽ có dạng \(2k+1\)
Các bước biến đổi:
\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)
\(=\left(n^4-1\right)\left(n^8-1\right)\)
\(=\left(n^4-1\right)^2\left(n^4+1\right)\)
\(n^{12}-n^8-n^4+1=\left(n^2-1\right)^2\left(n^2+1\right)^2\left(n^4+1\right)\)
Khi đó, ta xét \(\left(n^2-1\right)^2\) với \(n=2k+1\) thì \(\left(n^2-1\right)^2\) sẽ trở thành:
\(\left(n^2-1\right)^2=\left(n-1\right)^2\left(n+1\right)^2=\left(2k+1-1\right)^2\left(2k+1+1\right)^2=4k^2\left(2k+2\right)^2=16k^2\left(k+1\right)^2=16\left[k\left(k+1\right)\right]^2\)
chia hết cho \(16\)
Lại có: \(k\left(k+1\right)\) chia hết cho \(2\) (vì là tích của hai số nguyên liên tiếp) nên \(\left[k\left(k+1\right)\right]^2\) chia hết cho \(4\)
Do đó, \(\left(n^2-1\right)^2\) chia hết cho \(16.4=64\) \(\left(1'\right)\)
Mặt khác, với \(n=2k+1\) \(\Rightarrow\) \(\left(n^2+1\right)^2\) và \(n^4+1\) lần lượt là các số chẵn
nên \(\left(n^2+1\right)^2\) chia hết cho \(2^2=4\) \(\left(2'\right)\)
và \(n^4+1\) chia hết cho \(2\) \(\left(3'\right)\)
Từ \(\left(1'\right);\) \(\left(2'\right)\) và \(\left(3'\right)\) suy ra \(n^{12}-n^8-n^4+1\) chia hết cho \(512\)