Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)
\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)
\(=2a\cdot2b=4ab=VP^2\)
\(\Rightarrow VT\le VP\) *ĐPCM*
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)
\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)
\(=2a\cdot2b=4ab=VP^2\)
\(\Rightarrow VT\le VP\) *ĐPCM*
cho a,b,c >0 và a+b+c=3
cmr \(\sqrt[5]{\left(2a+b\right)\left(a+c\right)a}+\sqrt[5]{\left(2b+c\right)\left(b+a\right)b}+\sqrt[5]{\left(2c+a\right)\left(c+b\right)c}\) \(\le3\sqrt[5]{6}\)
Cho a>0 b>0 c>0 thỏa mãn a+b+c=1 tính gt bt
\(P=\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}+\sqrt{\frac{\left(c+ab\right)\left(b+ac\right)}{a+bc}}+\sqrt{\frac{\left(c+ab\right)\left(a+bc\right)}{b+ac}}\)
Tìm giá trị lớn nhất của :
a) A = \(\left(\sqrt{a}+\sqrt{b}\right)^2\) với a,b > 0 và a + b \(\le\)1
b) B = \(\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\)
với a,b,c,d > 0 và a + b + c + d \(\le\)1
Cho a,b,c>0.Chứng minh rằng\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le1\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Tìm GTLN của: \(B=\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\)
Với \(a,b,c,d>0\) và \(a+b+c+d=1\)
Cho \(a,b,c>0\)thỏa mãn \(\sqrt{a}+\sqrt{b}\ne\sqrt{c}\)và \(ab=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\)
CMR \(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)
tính
\(B=\frac{\sqrt{\left(a+bc\right)\left(b+ca\right)}}{\sqrt{c+ab}}+\frac{\sqrt{\left(b+ca\right)\left(c+ab\right)}}{\sqrt{a+bc}}+\frac{\sqrt{\left(c+ab\right)\left(a+bc\right)}}{\sqrt{b+ac}}\)
(với a, b, c là số thực và a+b+c=1)
Cho a;b;c > 0, ab + bc + ca = 1. CMR:
\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)