Xét \(x,y,z\ne0\)ta có:
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}< \left(x+y+z\right)^2\)(loại)
Xét trong 3 số có 2 số khác 0. Giả sử là \(x,y\ne0\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}< \left(x+y\right)^2\)(loại)
Vậy trong 3 số x, y, z phải có ít nhất 2 số bằng 0. Thế vô ta được phương trình có vô số nghiệm nguyên.
Ý làm lộn. Đừng coi cái trên nha:
Dễ thấy với 2 trong 3 số bằng 0 thì phương trình có vô số nghiệm.
Giả sử 2 số đó là; x = y = 0 thì ta có:
\(z^2=z^2\) vô số nghiệm nguyên.
Vậy bài toán được chứng minh.