Nếu \(x=y=z\Leftrightarrow xy+yz+zx=x^2+y^2+z^2\)
\(\Leftrightarrow x^2+y^2+z^2=xy+yz+zx\) 1
Nếu \(x^2+y^2+z^2=xy+yz+zx\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy+2yz+2zx=0\)
P/s; Đến đây thì bó tay còn lại thì tự giải nhé
I'm so sorry
làm tiếp bài của bạn Le Nhat Phuong
<=>\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
<=>(x-y)2+(y-z)2+(z-x)2=0
Vì \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0;\left(z-x\right)^2\ge0\)=>\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left(x-y\right)^2=\left(y-z\right)^2=\left(z-x\right)^2=0\)<=>x-y=y-z=z-x=0
<=>x=y=z(đpcm)