Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng nếu x-y+z=0 thì xy+yz+xz\(\ge\)
Giúp với!!!
Chứng minh rằng nễu x-y+z=0 thì xy+yz-xz\(\ge\)0
Help me please !!!!!!!
Cho x,y và z là các số khác 0 và x^2=yz ; y^2=xz ; z^2=xy chứng minh rằng x=y=z
Cho x,y và z là các số khác 0 và x^2=yz ; y^2=xz ; z^2=xy chứng minh rằng x=y=z
chứng minh rằng nếu x-y+z=0 thì xy+yz-zx lớn hơn hoặc bằng 0
235. Chứng minh rằng
a) Nếu x-y=0 thì \(xy\ge0\)
b) Nếu x-y+z=0 thì \(xy+yz-zx\ge0\)
Cho x, y, z là các số khác 0 và x2 = yz , y2 = xz , z2 = xy. Chứng minh rằng: x = y = z
chứng minh rằng nếu x,y,z thuộc Q thỏa mãn x,y,z thì
\(\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}=1\)
Ai làm nhanh, đúng và đầy đủ mình sẽ tick cho
Chứng minh rằng nếu các số x, y, z khác 0 thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\) thì x = y = z