Toán lớp 7Chia hết và chia có dưQui nạp
Trần Thị Loan Quản lý 20/07/2015 lúc 11:52
Chứng minh bằng phương pháp quy nạp:
- Với n = 1: có (1 + 1) = 2 chia hết cho 21
- Giả sử, với n = k thì (k+1).(k+2)...2k chia hết cho 2k
cần chứng minh : (k + 1+ 1).(k+1+ 2)... .2(k+1) chia hết cho 2k+1
Ta có: (k + 1+ 1).(k+1+ 2)... .2(k+1) = (k + 2).(k+3)....2k. 2.(k+1) = 2. (k+1).(k+2)...2k chia hết cho 2.2k = 2k+1
Vậy (n+1).(n+2)...2n chia hết cho 2n, thương là q
=> q = \(\frac{\left(n+1\right).\left(n+2\right)...2n}{2^n}=\frac{\left(2n\right)!}{n!2^n}\)