B = (4^1 + 4^2) + (4^3 +4^4) + ... + (4^299 + 4^300)
= 4(1+4)+4^3(1+4)+...+4^299(1+4)
= 4.5+4^3 .5 +...+4^299. 5
= 5.(4+4^3+...+4^299) chia hết cho 5
\(B=4^1+4^2+4^3+4^3+...+4^{300}\\=(4+4^2)+(4^3+4^4)+(4^5+4^6)+...+(4^{299}+4^{300})\\=4\cdot(1+4)+4^3\cdot(1+4)+4^5\cdot(1+4)+...+4^{299}\cdot(1+4)\\=4\cdot5+4^3\cdot5+4^5\cdot5+...+4^{299}\cdot5\\=5\cdot(4+4^3+4^5+...+4^{299})\)
Vì \(5\cdot(4+4^3+4^5+...+4^{299}) \vdots 5\)
nên \(B \vdots 5\)