`1 + 1/2 < 2`.
`1/2^2 + 1/2^3 < 1`.
`...`
`1/2^1997 + 1/2^1998 + 1/2^1999 < 1`.
`=> 1 + 1/2 + .... + 1/2^1999 < 1000`.
`=>` Vô lý.`
`1 + 1/2 < 2`.
`1/2^2 + 1/2^3 < 1`.
`...`
`1/2^1997 + 1/2^1998 + 1/2^1999 < 1`.
`=> 1 + 1/2 + .... + 1/2^1999 < 1000`.
`=>` Vô lý.`
CHứng minh rằng 1 + \(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{1999}}>1000\)
Câu 1: Tìm a để \(\dfrac{5a-17}{4a-23}\) có giá trị lớn nhất.
Câu 2: Cho \(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1998}\) ; m, n \(\in N\) . CMR m \(⋮\) 1999
Câu 3: CMR \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{5}{8}\)
Câu 4: CMR \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{n}{5^{n+1}}+...+\dfrac{11}{5^{12}}< \dfrac{1}{16}\) với n là STN.
Giúp mk với !
chứng minh rằng
\(\dfrac{1}{1000}+\dfrac{1}{1002}+\dfrac{1}{1004}+...+\dfrac{1}{2000}< \dfrac{1}{2}\)
CMR 1+1/2+1/3+.......+1/2^1999 >1000
cmr :1+1/2+1/3+...+1/2 mũ 1999>1000
Câu hỏi: CMR: 1+1/2+1/3+....1/2^1999 >1000
CMR: A= \(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{2}\)
1. Cho N=\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}\)
CMR \(\dfrac{3}{5}< N< \dfrac{4}{5}\)
2. Cho M=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{29}{3^{29}}-\dfrac{30}{3^{30}}\)
CMR \(M< \dfrac{3}{16}\)
3. Cho Q=\(\dfrac{2}{3}+\dfrac{8}{9}+\dfrac{26}{27}+...+\dfrac{3^{2021}-1}{3^{2021}}\)
CMR \(Q>\dfrac{4041}{2}\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{2013^2}\)
CMR B<\(\dfrac{3}{4}\)
A = 1 - \(\dfrac{1}{5^2}\) + \(\dfrac{1}{5^3}\) - \(\dfrac{1}{5^4}\) + \(\dfrac{1}{5^5}\) -...- \(\dfrac{1}{5^{1999}}\). C/m: A không phải là số tự nhiên.
(#Chi tiết#)