a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab
Chứng minh bất đẳng thức :
a) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
b) \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)với mọi a, b, c > 0
(Không dùng bất đẳng thức Cô-si)
Chứng minh bất đẳng thức \(\frac{a+b}{a^2+b^2}+\frac{b+c}{b^2+c^2}+\frac{c+a}{c^2+a^2}\le3\)
với a, b,c >0 và a+b+c=ab+bc+ca
chứng minh bất đẳng thức \(\frac{1}{\sqrt{AB}}>\frac{2}{A+B}với\) A,B>0 A khác B
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Cho a, b, c ≥ 0. Chứng minh các bất đẳng thức sau:
\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\forall a,b,c>0\)
Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
C/minh bất đẳng thức sau:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a,b>0\)
Giúp em với ạ, em đang cần gấp ạ! Em cảm ơn nhiều!
Chứng minh bất đẳng thức sau:
a, 1/a <1/b
b, a^2 + ab + b^2>= 0