Ta có \(5=1^2+2^2\) ; \(13=2^2+3^2\) ....
=> mẫu thức sẽ có dạng là \(n^2+\left(n+1\right)^2\)
Dễ dàng chứng ming được BĐT \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\) với mọi n dương
=> \(\frac{1}{5}< \frac{1}{2.1.2}\) ; \(\frac{1}{13}< \frac{1}{2.2.3}\)....; \(\frac{1}{2002^2+2003^2}< \frac{1}{2.2002.2003}\)
=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)
=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}\right)\)
=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(1-\frac{1}{2003}\right)< \frac{1}{2}\)
=> Đpcm
Có j không hiểu có thể hỏi lại mk
Chúc bạn làm bài tốt