cái này đặt a= 2^-x,b=2^-y,c=2^-z
==>a+b+c=1
áp dụng cosi bình thường,vì a,b,c vai trò ngag nhau,đấu = khí a=b=c=1/3,dựa vào điểm rơi để áp dụng cosi thôi
cái này đặt a= 2^-x,b=2^-y,c=2^-z
==>a+b+c=1
áp dụng cosi bình thường,vì a,b,c vai trò ngag nhau,đấu = khí a=b=c=1/3,dựa vào điểm rơi để áp dụng cosi thôi
C/m bất đẳng thức sau:
\(( a^2 + b^2 )(a^2 + 1) \geq 4 a^2 b\)
luôn đúng với mọi a, b.
C/m bất dẳng thức:
\( ( a^2 + b^2 ) (a^2 + 1) \geq 4 a^2 b \)
luôn đúng với mọi a, b.
C/m bất dẳng thức sau:
\((a^2 +b^2)(a^2+1) \geq 4a^2b\) luôn dúng với mọi a,b
Để bất đẳng thức (x+1)(x+2)^2(x+3) \(\geq\) m luôn đúng với mọi x thì giá trị nguyên lớn nhất của m là ?
Giải chi tiết giúp mình với!
Chứng minh các bất đẳng thức sau
a+1/c (a-b)(b-c)>=4 (mọi a,b,c>0)a+27/2 (a-1)(a+1)^3>=5/2 (mọi a>1)2a+1/(a-b)(b-c)(a+1)^3>=4 (mọi a>b>c>0)cho a>b bất đẳng tức nào là bất đẳng thức đúng a, 2a<2b ,b, a+4>=b+4 c, x=2-2 d vô nghiệm
Chứng minh bất đẳng thức sau luôn đúng
Vơis mọi a,b,c>=0
\(ơ(a+b+c)/3] >= abc \)
chứng minh các bất đẳng thức sau:
a)\(\left(\dfrac{a+b}{2}\right)^2>=ab\) với mọi a,b
b)\(a^2+b^2+c^2>ab+bc+ca\)
chứng minh các bất đẳng thức sau
a/ \(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\) với mọi a,b
b/ \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\) với mọi a,b,c>0