bài 1: Chứng minh bất đẳng thức
a) \(^{x^2+12+39>0}\)với mọi x
b) \(^{2x-x^2-2< 0}\)với mọi x
c) \(^{-9x^2+12x< 0}\) với mọi x
d) \(^{3-10x^2-4xy-4y^2< 0}\) với mọi x,y
e) \(^{2x^2+4y^2+4xy+2x+4y+9\ge0}\) với mọi x,y
Bài 2: Dựa vào đề bài 1 tìm GTLN,GTNN
Nhờ các bạn giải giúp bài toán:Tìm GTNN của A=-x/(x^2+x+1) với x>0
Tìm GTNN của B=(3x^2-4x)/(x^2+1)
Tìm GTNN của C= (2x+1)/(x^2+2)
Tìm GTLN của M=(x^2+x+1)/x^2
giúp mình với mọi người ơi:
A) Tìm GTLN của A= x-3x^2+1
B) Tìm GTLN của B= 2x^2-8x+1
a, Cho `0<x<25`
Tìm GTLN:`(80-2x)(50-2x)x`
b, `0<x<2`. Tìm GTLN: `5x(2-x)`
c, `x≥2`. Tìm GTLN: `x + 1/x`
d, Cho `x,y>0, x+y≤1`. TÌm GTNN: `x + y + 1/x + 1/y`
Bài 1: Chứng minh
a. A = 2x ^ 2 + 2x + 1 > 0 với mọi x
b. B = 4 + x ^ 2 + x > 0 với mọi x
Bài 2: Chứng minh
a. A = - x ^ 2 + 3x - 1 < 0 với mọi x
b. B = - 2x ^ 2 - 3x - 3 < 0 với mọi x
1)CMR: với mọi số tự nhiên n thì : A=5n+2+26.5n+82n+1
2) Với x \(\ge\) 0. Tìm GTNN của bt
a)P=\(\dfrac{\left(x+2\right)^2}{2x}\)
b)Q=\(\dfrac{\left(x+1\right)^2}{y}+\dfrac{4y}{x}\) với x>0,y>0
1. Chứng minh rằng:
a. -9x^2+12x-15<0 với mọi x
b. -5-(x-1)(x+2)<0 với mọi x
2. Tìm giá trị nhỏ nhất của các đa thức:
a. B= 2x^2-6x
b. c= x^2+y^2-x+6y+10
c. D= x^2+3x+7
d. E= (x-2)(x-5)(x^2-7x-10)
e. F= (2x-1)^2+(x+2)^2
f. G= x^2-3x+5
g. H= 2x^2+9y^2-6xy-6x-12y+2004
Bài 1 : Tìm x
a, (7x-3)^2 - 5x (9x+2) - 4x^2 = 18
b, (x-7)^2 -9 (x+4)^2 = 0
c,(2x+1)^2+(4x-1) (x+5) =36
Bài 2: Chứng minh rằng:
a, x^2 -12x +39> 0 với Mọi x
b,17- 8x+x^2>0 với mọi x
c, -x^2 +6x -11<0 với mọi x
d,-x^2 +18x -83<0 với mọi x
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)