Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khánh Toàn

CÍU TUIIII

Câu 4: \(\left(m-1\right)x^4-2\left(m+1\right)x^2+m-5=0\)(1)

Đặt \(a=x^2\left(a>=0\right)\)

Phương trình (1) sẽ trở thành:

\(\left(m-1\right)\cdot a^2-2\left(m+1\right)a+m-5=0\)(2)

Để phương trình (1) có 4 nghiệm phân biệt thì phương trình (2) có 2 nghiệm dương phân biệt

=>\(\left\{{}\begin{matrix}m-1\ne0\\\left[-2\left(m+1\right)\right]^2-4\left(m-1\right)\left(m-5\right)>0\\\dfrac{2\left(m+1\right)}{m-1}>0\\\dfrac{m-5}{m-1}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\4m^2+8m+4-4m^2+24m-20>0\\\dfrac{m+1}{m-1}>0\\\left[{}\begin{matrix}m>5\\m< 1\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\32m-16>0\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\\\left[{}\begin{matrix}m>5\\m< 1\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>5\\m< -1\end{matrix}\right.\\\end{matrix}\right.\)

=>\(m>5\)

Nguyễn Việt Lâm
29 tháng 1 lúc 20:32

3.

Đặt \(x^2=t\ge0\) \(\Rightarrow x=\pm\sqrt{t}\)

- Nếu \(t>0\) sẽ cho 2 nghiệm x phân biệt

- Nếu \(t=0\) cho 1 nghiệm \(x=0\)

- Nếu \(t< 0\Rightarrow\) ko tồn tại nghiệm x tương ứng

Phương trình trở thành:

\(t^2+\left(2m+1\right)t-m+3=0\) (1)

Từ trên ta thấy pt đã cho có 3 nghiệm khi  và chỉ khi (1) có 2 nghiệm pb sao cho 1 nghiệm dương và 1 nghiệm bằng 0

Do pt có 1 nghiệm bằng 0 \(\Rightarrow-m+3=0\Rightarrow m=3\)

Khi đó: \(t^2+7t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=-7< 0\left(ktm\right)\end{matrix}\right.\)

Vậy không tồn tại m thỏa mãn yêu cầu


Các câu hỏi tương tự
đặng đức minh
Xem chi tiết
blackpinkvr
Xem chi tiết
Tam Nghi Trần
Xem chi tiết
Linh Nguyễn
Xem chi tiết
๖ۣۜHewwy❤‿❧❤Fei❤☙
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Bá Hùng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết