Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phuonn Maii

cíu t đi =)) 

a,chứng minh mọi n ϵ N* ta luôn có

1^2 + 2^2 + 3^2 +...+ n^2 = n ( n+1 ) ( 2n+1 ) chia 6 

b,Chứng minh rằng A = 1.5 + 2.6 +3.7 +.... + 2023.2027 chia hết cho các số 11, 23 và 2023.

 

c,Tìm tất cả các số tự nhiên n ( 1 ≤ n ≤ 2000) để biểu thức B = 1.3 + 2.4 +... n ( n + 2 ) chia hết cho 2027.

Nguyễn Đức Trí
19 tháng 9 2023 lúc 7:20

a) Giả sử \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\)

- Với \(n=1:\)

\(S_n=\dfrac{1.\left(1+1\right)\left(2.1+1\right)}{6}=\dfrac{2.3}{6}=1\left(luôn.đúng\right)\)

- Với \(n=k:\) 

\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\left(\forall k\inℕ^∗\right)\left(luôn.đúng\right)\)

- Với \(n=k+1:\) 

\(S_{k+1}=1^2+2^2+3^2+...+k^2+\left(k+1\right)^2\)

\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+7k+6\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+3k+4k+6\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k\left(k+\dfrac{3}{2}\right)+4\left(k+\dfrac{3}{2}\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(2k+4\right)\left(k+\dfrac{3}{2}\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(k+2\right)\left(2k+3\right)\right]}{6}\) (Đúng với \(n=k+1\))

Vậy \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\left(dpcm\right)\)

Phuonn Maii
19 tháng 9 2023 lúc 13:26

r ai đúng giơ tay =)))))

Phuonn Maii
19 tháng 9 2023 lúc 21:18

r đáp án đâu :)) t bị ngu lên đây thành bị khờ =))))))))

chien dinh
2 tháng 10 2023 lúc 20:53

😏😏


Các câu hỏi tương tự
Phạm Anh tuấn
Xem chi tiết
tatrunghieu
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
nguyenthaohanprocute
Xem chi tiết
Thu Đào
Xem chi tiết
Văn Đức Nhung
Xem chi tiết
Nguyenxuannhi
Xem chi tiết
Thu Đào
Xem chi tiết