a: Ta có: \(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=3\cdot\left(2+2^3+...+2^{99}\right)⋮3\)
b: Ta có: \(B=4+4^2+4^3+...+4^{2022}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2021}\left(1+4\right)\)
\(=5\cdot\left(4+4^3+...+4^{2021}\right)⋮5\)
a)\(A=2+2^2+2^3+2^4+...+2^{100}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=3.2+3.2^3+...+3.2^{99}=3\left(2+2^3+...+2^{99}\right)⋮3\)b) \(B=4+4^2+4^3+...+4^{2022}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2021}\left(1+4\right)=5.4+5.4^3+...+5.4^{2021}=5\left(4+4^3+...+4^{2021}\right)⋮5\)