Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...............;\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow S<\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{\left(n-1\right).n}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{n-1}-\frac{1}{n}\)
=\(1-\frac{1}{n}<1\)
Vậy S<1