a) (m+1)^2>=4m
<=>(m+1)*(m+1)>=4m
=>m2+m+m2+m>=4m
=>2m2+2m>=4m
=>2(m2+m)>=4m
xét m=0=>2(02+0)=4*0
=>2(m2+m)=4m (1)
xét m\(\ne\)0 vì m2+m=4m với mọi m
=>2(m2+m)>4m (2)
từ (1) và (2)=>(m+1)^2>=4m
a) (m+1)^2>=4m
<=>(m+1)*(m+1)>=4m
=>m2+m+m2+m>=4m
=>2m2+2m>=4m
=>2(m2+m)>=4m
xét m=0=>2(02+0)=4*0
=>2(m2+m)=4m (1)
xét m\(\ne\)0 vì m2+m=4m với mọi m
=>2(m2+m)>4m (2)
từ (1) và (2)=>(m+1)^2>=4m
Cho m < n, chứng tỏ: 4(m – 2) < 4(n – 2)
Chứng tỏ rằng
m^2+n^2+2>=2(m+n)
a/ cho a+2>5 chứng minh a>3
b/ cho a>3 chứng minh a+2>5
c/ chứng tỏ m>n thì m-n>0
d/ chứng tỏ m-n>0 thì m>n
e/ cho m<n chứng minh m-5<n-4
Với số m và số n bất kì,chứng tỏ rằng:
a) \(\left(m+1\right)^2\ge4m\)
b)\(m^2+n^2+2\ge2\left(m+n\right)\)
Với số m và số n bất kì, chứng tỏ rằng: m 2 + n 2 + 2 ≥ 2(m + n)
Chứng minh rằng
a) A = n(3n-1) - 3n(n-2) ⋮ 5 (∀n ϵ R)
b) B = n(n+5) - (n-3)(n+2) ⋮ 6 (∀n ∈ Z)
c) C= (n2 + 3n - 1)(n+2) - n3+2 ⋮ 5 (∀n ϵ Z)
Cho m> n hãy so sánh
a, -8m + 2 với -8n +2
b, 6n-1 với 6m +2
cho m <n chứng tỏ -4m +3 > -4n +2
Giải chi tiết ra cho em vs nhé
Cho m > n, chứng tỏ: 3m + 2 > 3n
chứng tỏ rằng:
a) (m+1)2 \(\ge\)4m
b) m2 +n 2 +2 \(\ge\)2(m+n)