CMR : \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{67.70}< 1\)
Ai nhanh, đúng mk k cho
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
chứng tỏ rằng \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2010.2013}< \frac{1}{3}\)
Cho S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46 . Chứng tỏ rằng S<1
cho S= \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
Hãy chứng tỏ rằng S<1
B=1/1.4+1/4.7+1/7.10+...+1/2008.2011. Chứng minh rằng B<1
CHO S : 3/1.4 + 3/4.7 + 3/7.10 ... + 3/40.43 + 3/43.46
HÃY CHỨNG TỎ RẰNG S <1
Cho S= 3/1.4+3/4.7+3/7.10+.......3/40.43+3/43.46.
Hãy chứng tỏ rằng S<1
cho A=3/1.4+3/4.7+3/7.10+.....+3/n+(n+3) (n thuộc n sao)
chứng tỏ rằng A<1