a) giả sử \(a^2+b^2\ge2ab\)
=> \(a^2+b^2-2ab\ge0\)
=> \(\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b)
vậy điều giả sử là đúng
b) áp dụng BĐT ở phần a ta được \(\frac{a^2+b^2}{2}\ge\frac{2ab}{2}=ab\)
a) Vì, ta có:
\(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)(dpcm)
b) tu cau a, ta có:
\(a^2+b^2\ge2ab\Rightarrow\frac{a^2+b^2}{2}\ge ab\)(dpcm)
Dấu bằng xảy ra khi và chỉ khi a+b.