1 /22 +1/ 32 +.......+ 1/ 1002 < 1/ 1. 2 + 1 / 2 .3 + 1 / 3. 4 + ...... + 1 / 99 .100
= 1- 1 / 2 + 1 / 2 - 1/ 3 + 1 / 3 - 1 / 4 +......+ 1 / 99 - 1 / 100
= 1 - 1 / 100< 1
=> 1 /22 +1/ 32 +.......+ 1/ 1002 < 1 ( đpcm)
1 /22 +1/ 32 +.......+ 1/ 1002 < 1/ 1. 2 + 1 / 2 .3 + 1 / 3. 4 + ...... + 1 / 99 .100
= 1- 1 / 2 + 1 / 2 - 1/ 3 + 1 / 3 - 1 / 4 +......+ 1 / 99 - 1 / 100
= 1 - 1 / 100< 1
=> 1 /22 +1/ 32 +.......+ 1/ 1002 < 1 ( đpcm)
\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
cHỨNG TỎ 0< A < 1
chứng minh rằng A = \(\frac{1}{2^2}\)+\(\frac{1}{3^2}\) +\(\frac{1}{4^2}\)+...+\(\frac{1}{100^2}\) không phải là số tự nhiên
Cho biểu thức A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)
Chứng tỏ 0 < A < 1
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{50^{^2}}\) chứng minh A > 2
cho abc=1 , chứng minh :
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Chứng minh rằng \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}
Chứng minh rằng: \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}
Chứng minh: \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2014}{2^{2014}}< 2\)
CMR:a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)<1/3
\(b.\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}